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Abstract

Kidney exchange is an organized barter market that al-
lows patients with end-stage renal disease to trade willing
donors—and thus kidneys—with other patient-donor pairs.
The central clearing problem is to find an arrangement
of swaps that maximizes the number of transplants. It is
known to be NP-hard in almost all cases. Most existing
approaches have modeled this problem as a mixed integer
program (MIP), using classical branch-and-price-based tree
search techniques to optimize. In this paper, we frame the
clearing problem as a Maximum Weighted Independent Set
(MWIS) problem, and use a Graph Neural Network guided
Monte Carlo Tree Search to find a solution. Our initial results
show that this approach outperforms baseline (non-optimal
but scalable) algorithms. We believe that a learning-based op-
timization algorithm can improve upon existing approaches
to the kidney exchange clearing problem.

1 Introduction
Transplantation is favored over dialysis as a treatment for
chronic kidney disease. Although there is a supply of kidney
transplants from cadavers, this resource is extremely limited.
As of 2018, there are over 40,554 people in the U.S. entering
the waiting list for a kidney cadaver transplants, with only
14,725 people leaving with a transplant.1 If a patient has a
willing donor, an operation may be performed if the two are
compatible. Compatibility is influenced by a variety of fac-
tors, including blood type and antibodies within the patient’s
blood. However, in many cases, a patient has an incompati-
ble donor, and cannot directly perform a transplantation.

Kidney exchange provides a method to match patients and
donors. The pool of patients is commonly expressed with a
compatibility graph G, with a vertex for each patient-donor
pair. A directed edge e connects vi to vj if the patient of
pair vj is compatible with the donor of vi. A solution can
be achieved through cyclic trades, where each pair’s donor
donates to the next pair’s patient. Our goal is to maximize
the cardinality of pairs covered by the disjoint cycles.

This problem is known as the disjoint cycle covering
problem, and is NP-hard for finite cycles of length at least
three (Abraham et al. 2007). Both the theory and prac-
tice of kidney exchange have been impacted by the AI,
OR, and Economics communities (Anderson et al. 2015;
Dickerson and Sandholm 2015). We reformulate the disjoint
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cycle covering problem as Maximum Weighted Independent
Set (MWIS). We create a new graph with a vertex for each
possible cycle in the compatibility graph and weight set to its
original cycle’s cardinality. We create an edge between two
vertices if their respective cycles share a vertex. Our goal is
to select a subset of vertices in this new graph with (i) max-
imum weight and (ii) no two vertices sharing an edge.

Traditionally, these problems are solved through branch-
and-price-based methods (Barnhart et al. 1998), relying on
generic heuristics to guide the search. These algorithms of-
ten fail to exploit the distributional data (e.g., over the fam-
ily of directed compatibility graphs) available via historical
matchings. In other words, the constraints induced by the
compatibility graph can be thought of as being drawn from
some underlying distribution.

Motivated by this circumstance, we approach this prob-
lem (now cast as MWIS) as a learning problem. We adopt a
graph neural network (GNN) as our heuristic, as it handles
structured data well, and can scale to different sizes of input
(i.e., graph sizes). Graph neural networks have seen success
in a variety of areas, such as structured molecular prediction,
text classification and relation reasoning (Wu et al. 2019).
We then use the trained GNN as a heuristic in a Monte Carlo
Tree Search (MCTS). MCTS-based approaches can work
well in combinatorial games such as Go, and many com-
binatorial optimization problems (Browne and others 2012).
We give promising preliminary results and future directions.

2 Methods
After formulating the compatiblity graph G = (V,E) as
a WMIS problem graph G, we adopt a Monte Carlo Tree
Search (MCTS) guided by a Graph Neural Network (GNN).

Graph Neural Network
We use a graph neural network (GNN), fθ(G), to predict the
likelihood of a vertex being in an optimal solution. The in-
put to the GNN is a weighted MWIS graph, G = (V,E),
with n = |V |. The graph neural network outputs a probabil-
ity map p ∈ [0, 1]n, with each element pi corresponding to
vertex i’s likelihood. We use supervised learning with an or-
acle to train the graph neural network. The oracle, for each
graph G, outputs a binary label vector 1 ∈ {0, 1}n for a
particular optimal solution, with 1 indicating that the corre-
sponding vertex is in the solution, and 0 otherwise. We use
the ADAM optimizer to minimize the cross entropy loss be-
tween the probability map p = fθ(G) and 1.



MDP Formulation
Maximum weighted independent set problem (MWIS) could
phrased in terms of a Markov Decision Process (MDP). We
define the state, s, to be a MWIS graph G ∈ (V,E). The
actions available, a ∈ V , would be the vertices in the graph.
The state would transition from s to s′ by the removal of
the vertex specified by the action and the vertex’s neighbors,
N(a). The reward resulting from the transition, r would be
the weight of action’s vertex. The MDP’s terminal state, sT ,
is the empty graph. The objective of the MDP is to maximize
the undiscounted cumulative sum of rewards,

∑
rt. A max-

imal independent set can be recovered from the trajectory,
and would be the tuple (a0, . . . , aT−1).

Monte Carlo Tree Search
Using the MDP framework outlined above, we adopt a
Monte Carlo Tree Search (MCTS) guided by a GNN to
tackle the MWIS problem. The GNN serves as a probabilis-
tic prior for the search algorithm, narrowing down the large
branching factor. We use the GNN in two distinct ways: to
rank the unexplored nodes in the search tree for expansion,
and as a coefficient in our upper confidence bound.
Selection. The MCTS algorithm follows a tree policy from
the root node to a leaf node, a node not yet fully ex-
panded. At step t of selection, the algorithm chooses at =
argmaxa(Q(st, a) + U(st, a)), with Q as an estimation of
the value of the state-action, and U as an upper confidence
bound. We incorporate the GNN fθ as a coefficient of U :

U(st, a) = c ∗ P (st, a) ∗
√∑

bN(st, b)

1 +N(st, a)

with P (s, a) = [softmax (fθ(s))]a, and N(s, a) as the
state-action visit count. Using the GNN’s coefficient allows
the GNN to have an influence on the tree policy early on,
with diminishing influence as the MCTS algorithm becomes
more confident (indicated by the visit counts).
Expansion. Once the MCTS algorithm reaches a leaf node
sl, the algorithm picks a node to expand by choosing action

al ∼ softmax ([[fθ(sl)]a|a ∈ Aunexplored(sl)])

This technique effectively allows the GNN to ”rank” the un-
explored nodes. Once a node has k explored nodes, we label
the node as fully expanded. We use the GNN and this limit
to manage the large branching factor that arises from the
MWIS MDP.
Simulation. We use uniformly random rollouts starting
from the leaf node to a terminal node sl. Random rollouts
provide a quicker simulation than a full rollout guided by the
GNN, while retaining a reasonable amount of performance.
Backpropagation. Most MCTS algorithms use an average
of rollouts to estimate a node’s Q value. We propose to use
a maximum of the rollouts, as our rollouts can be viewed as
a lower bound on the node’s true Q value (Sabharwal et al.
2012). Each of our rollouts is a maximal independent set,
and therefore, guaranteed to be a valid solution.

3 Experiment
We analyze the performance of our MCTS approach com-
pared to two baselines.
Dataset. We generate random Erdős-Rényi compatiblity
graphs with various sizes and sparsities. We converted these

Figure 1: Optimality ratios of MCTS, Greedy, and Random
on Erdős-Rényi graphs (p = 0.02), with 1 SD intervals.

compatibility graphs into their respective MWIS graphs, and
used Gurobi as our oracle to find an optimal solution.
Baselines. We compare our MCTS algorithm against two
baselines, random and greedy. Random generates a random
maximal independent set by picking a random action at each
step of the MDP. Greedy repeatedly picks the node that
minimizes the short term ”loss”, the difference between the
node’s weight and the weighted sum of the node’s neighbors.
Evaluation. We tested the performance of our algorithm and
baselines by examining the optimality ratio, the ratio be-
tween the attained score and the optimal score.2 The score
is defined as the weighted sum of the nodes in the MWIS
solution set, or the cardinality of the cycle cover.
Results. Our algorithm outperformed both baseline algo-
rithms on a variety of compatibility graph sizes (Fig. 1).

4 Conclusion
We propose a novel method to approximately solve the com-
binatorial optimization problem of kidney exchange through
GNN-guided MCTS. This is very early-stage, but promis-
ing, work (Fig. 1). Moving forward, we are applying some
of the techniques described in the context of branch and
bound search. Branch and bound enables us to utilize both
the upper and lower bounds of a particular state, as well as
the guidance from a learning method such as GNNs. Ac-
knowledgements. Dickerson was supported by NSF CA-
REER Award IIS-1846237 and a gift from Google.

References
David Abraham, Avrim Blum, and Tuomas Sandholm. Clearing al-
gorithms for barter exchange markets: Enabling nationwide kidney
exchanges. In EC, pages 295–304, 2007.
Ross Anderson, Itai Ashlagi, David Gamarnik, and Alvin E Roth.
Finding long chains in kidney exchange using the traveling sales-
man problem. PNAS, 112(3):663–668, 2015.
Cynthia Barnhart, Ellis L. Johnson, George L. Nemhauser, Mar-
tin W. P. Savelsbergh, and Pamela H. Vance. Branch-and-price:
Column generation for solving huge integer programs. Operations
Research, 46(3):316–329, 1998.
Cameron B Browne et al. A survey of Monte Carlo tree search
methods. IEEE Transactions on Computational Intelligence and
AI in Games, 4(1):1–43, 2012.
John P. Dickerson and Tuomas Sandholm. FutureMatch: Combin-
ing human value judgments and machine learning to match in dy-
namic environments. In AAAI, pages 622–628, 2015.
Ashish Sabharwal, Horst Samulowitz, and Chandra Reddy. Guid-
ing combinatorial optimization with uct. In CPAIOR, 2012.
Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi
Zhang, and Philip S Yu. A comprehensive survey on graph neural
networks. arXiv preprint arXiv:1901.00596, 2019.

2We solve to optimality the NP-hard optimization problem, for-
mulated as a MIP, using Gurobi, and use this as an upper bound.


